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A B S T R A C T

A model for heating and evaporation of a cloud of monocomponent droplets in air, taking into account the
evolution of droplet number densities, is developed and implemented into ANSYS Fluent. Functionality testing of
the new customised version of ANSYS Fluent is based on its application to the analysis of a droplet cloud in a
two-phase back-step flow. It is shown that the effect of the droplet cloud needs to be taken into account when
estimating the heat and mass transfer rates from the carrier phase to the droplets.

1. Introduction

The importance of modelling droplet heating and evaporation in
various engineering and environmental applications is well known
[1,2]. Although a number of advanced models of these processes have
been developed (see [1,2] for the details), only very basic models are
currently used in most commercial and research Computational Fluid
Dynamics (CFD) codes.

The results of implementation of a previously developed model for
monocomponent droplet heating and evaporation into ANSYS Fluent
are described in [3]. In this model the effects of liquid finite con-
ductivity and recirculation inside droplets were taken into account
based on the Effective Thermal Conductivity (ETC) model. This model
is based on the analytical solution to the heat conduction equation in-
side the droplet, assuming spherical symmetry of the processes. The
results of implementation of a more general multicomponent droplet
heating and evaporation model into ANSYS Fluent are described in [4].

One of the main limitations of the models described in [3] and [4] is
that they are applicable to isolated droplets only, while in most realistic
applications droplet clouds rather than isolated droplets are observed.
The effects of heating and evaporation of droplet clouds could be in-
vestigated based on the conventional Lagrangian approach in which
individual droplets are tracked along their trajectories. This approach,
however, in most cases requires that calculations are made for prohi-
bitively large numbers of droplets in order to perform reliable estimates
of droplet number density in each computational cell.

As shown in a number of papers, including [5], a more efficient

method of calculating droplet number density, when compared to the
conventional Lagrangian approach, could be based on the fully La-
grangian approach developed in [6,7]. This approach is sometimes re-
ferred to as the Osiptsov method. The results of the implementation of
this method into ANSYS Fluent are described in [8].

The main aim of this paper is to present a new model for heating
and evaporation of a droplet cloud, based on a combination and further
development of the approaches presented in [3], focused on heating
and evaporation of individual droplets, and in [8], focused on the
evolution of droplet clouds without heating and evaporation, and the
results of the implementation of this model into ANSYS Fluent. We will
use the same droplet heating and evaporation model as described in
[3]. A two-phase back-step flow will be used for functionality testing of
the combined model. As in [3] and [8], the effects of droplets on the
carrier phase are ignored. The analysis is restricted to monosized and
monocomponent droplets.

The mathematical models of the gas-droplet flow and their im-
plementation into ANSYS Fluent are described in Section 2. In Section
3, the results of application of the new customised version of ANSYS
Fluent to the analysis of a two-phase back-step flow are described. The
main results of the paper are summarised in Section 4.

2. Basic equations

2.1. Gas (carrier phase) flow

The carrier phase is modelled as an incompressible or compressible
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viscous flow of gas described by the continuity and Navier–Stokes
equations. In the case of an incompressible flow these equations are
presented as

∇⋅ =u 0 (1)

∂
∂

+ ⋅∇ = −∇ + ∇ρ
t

ρ p μu u u u( ) ,2
(2)

where u is gas velocity, ρ, p and μ are its density, static pressure and
dynamic viscosity, respectively.

2.2. Droplets in a gas flow

Droplets are assumed to be spherical. The drag force acting on them
is estimated based on the Stokes drag law which is justified for small
droplet Reynolds numbers

=
∣ − ∣

≤
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u v
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where v and dd are droplet velocity and diameter, respectively. For
higher Red a correction should be included in the drag law, such as the
Oseen, Massley, Sternin or Klyachko corrections [9].

The density of droplets ρd is assumed to be much higher than that of
a gas ρ. In this case, buoyancy, added-mass and Basset–Boussinesq
forces can be ignored. Also, droplets are assumed to be large enough for
Brownian forces to be negligible. This allows us to present the equations
of droplet motion as

=d
dt
x v (4)
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where droplet position x and velocity v are considered in Eulerian co-
ordinates, droplet response time τd is estimated as

=τ
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2.3. Fully Lagrangian (Osiptsov) approach

The equation for the number density nd of droplets along the droplet
trajectory, inferred from the mass conservation principle, can be
written as [6]

=n n
J

,d
0

(7)

where n0 is the initial droplet number density, |J| is the absolute value
of the Jacobian of the Eulerian–Lagrangian transformation (absolute
value of the determinant of the Jacobi matrix). Both nd and J are
functions of t and Lagrangian coordinates (x0, t0). The components of
the Jacobi matrix are defined as Jij= ∂xi/∂xj0, where xi and xj0 are the
components of x and x0, respectively. These can be calculated from the
solution to the system of ordinary differential equations [6]:
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In the two-dimensional case (i, j, k=1, 2), Eqs. (8) and (9) are the
system of 8 ordinary differential equations with respect to time along
the droplet trajectories, calculated based on Eqs. (4)–(5). The values of
nd along these trajectories are inferred from Eq. (7).1

2.4. Heating and evaporation of a droplet cloud

The same model for droplet heating and evaporation as described in
[3] is used in our study. The coupling of this model and the Fully La-
grangian Approach (FLA) is based on the calculation of heat q ̇ and mass
ṁ transfer rates between the carrier phase and individual droplets and
the multiplication of these rates by the droplet number densities, cal-
culated based on the FLA:

=
=

q qn
m mn
˙ ˙
˙ ˙ .
FLA d

FLA d (10)

The effects of droplets on the carrier phase and the interactions
between droplets are ignored.

2.5. Implementation of the models into ANSYS Fluent

Both models were implemented into ANSYS Fluent using the C
programming language and the User Defined Functions (UDF) cap-
ability of ANSYS Fluent. ANSYS Fluent is used as a finite-volume solver
for the Navier–Stokes equations. The model of droplet heating and
evaporation was incorporated into ANSYS Fluent using
DEFINE_DPM_HEAT_MASS macros. The FLA was introduced in the
ANSYS Fluent particle tracker using DEFINE_DPM_SCALAR_UPDATE
macros. Equations for the components of the Jacobi matrix were solved
along the trajectories calculated by ANSYS Fluent. Properties of the
droplet material were introduced via DEFINE_DPM_PROPERTY macros.

This implementation allows one to switch from the one-way steady-
state formulation to the two-way coupled transient formulation with
minimal changes to the code.

3. Results

A two-dimensional laminar steady back-step flow was considered.
The carrier phase was assumed to be air, the inlet velocity of which was
set to 0.3 ms−1. The geometry of the domain is schematically shown in
Fig. 1. Zone AB (2mm) is the inlet, zones BC (10mm), CD (6mm) and
DE (90mm) are the walls, EF (8mm) is the outlet, and AF (100mm) is
the symmetry plane. The arrow shows the direction of the flow and
injected droplets.

Two cases were considered. In CASE-1, temperature T at the inlet
and all walls was set to 400 K, which leads to a uniform temperature
distribution in the computational domain (T=400 K). In CASE-2,
temperature at the inlet was set to 300 K and the temperature of the
walls was set to 400 K.

The contours of the carrier phase flow stream function for both
cases are shown in Fig. 2a,b. As can be seen from these figures, the
contours for both cases are rather similar. In CASE-1, the maximal ve-
locity (umax= 0.45 ms−1) is lower than that of CASE-2
(umax= 0.5 ms−1) due to a decrease in gas density in the non-uniform
temperature field. Contours of the resulting temperature distribution

Fig. 1. Geometry of the setup used in the test case.

1 The generalisation of this approach to modelling turbulent two-phase flows
was considered in [10]. The implementation of the latter approach into ANSYS
Fluent is beyond the scope of this study.
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for CASE-2 are shown in Fig. 2c.
Monocomponent n-dodecane droplets were injected at the inlet.

They had initial velocity 0.3 ms−1 and initial temperature 300 K in both
cases. Droplets of three initial diameters dd were considered:

d0120= 120 μm, d060= 60 μm and d020= 20 μm. Initial conditions
for the Jij were the same for all droplets: (J11)0= (J22)0= 1,
(J12)0= (J21)0= 0. Initial values of the ωij were 0 for all combinations
of i, j. In the FLA these are the standard initial conditions for droplets

Fig. 2. Contours of the flow streamlines multiplied by two-dimensional density in CASE-1 (a) and CASE-2 (b), and the flow temperature distribution in CASE-2 (c).

Fig. 3. Trajectories of the droplets. Solid, dash-dotted and dashed curves refer to d020, d060 and d0120, respectively.

Fig. 4. Droplet temperatures versus time. Solid, dash-dotted and dashed curves refer to d020, d060 and d0120, respectively.
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starting with the same velocity [7,5].
Trajectories of the droplets near the inlet are shown in Fig. 3. Solid,

dash-dotted and dashed curves refer to d020, d060 and d0120, respec-
tively. As can be seen from these figures, droplets were initially repelled

from the wall due to the boundary layer effects, as expected.
Fig. 4 shows the evolution of droplet temperatures Td along several

trajectories for each case. In CASE-1 (Fig. 4a), the temperatures of all
droplets rise from their initial values to the equilibrium point, at which

Fig. 5. Normalised droplet diameters versus time. Solid, dash-dotted and dashed curves refer to d020, d060 and d0120, respectively.

Fig. 6. Time evolution of normalised droplet number densities. Number densities for the trajectories starting close to the wall are lower than those for the trajectories
starting near the symmetry plane.
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heat loss due to evaporation compensates for the heat transferred from
the carrier phase to the droplets. The temperatures of droplets with the
same initial diameters change at the same rate for all trajectories due to
the uniform flow temperature distribution.

In CASE-2 (Fig. 4b), the rates of change of droplet temperature are
lower than in CASE-1. For each initial diameter, droplet temperature
evolutions depend on the droplet initial positions (proximity to the hot
walls). The temperatures of droplets closest to the wall increase faster
than those of droplets near the symmetry plane, as expected.

Fig. 5 shows the time evolution of droplet diameters, normalised by
the initial diameters, along various trajectories. Small growth of the
diameters at the beginning of the process is caused by droplet thermal
expansion. In CASE-1 (Fig. 5a), droplets with the same initial diameters
evaporate at the same rates for all trajectories, as the carrier phase
temperature field is uniform. In CASE-2 (Fig. 5b), non-uniform tem-
perature field of the carrier gas results in different evaporation rates for
droplets at various initial locations. Droplets which are close to the wall
evaporate faster, as expected.

The evolution of droplet number densities nd along various

trajectories is shown in Fig. 6. As can be seen from this figure, in both
cases the evolution of nd depends on the initial proximity of the droplet
to the wall. The droplets, injected close to the centre of the inlet, move
along almost straight lines. The rate of increase in their velocities is the
highest, which leads to the greatest decrease in nd (for d0120 this is up to
45% in CASE-1 and up to 60% in CASE-2, for d060 this is up to 30% in
CASE-1 and up to 40% in CASE-2, for d020 this is less than 5% in CASE-
1, due to short droplet lifetimes, and up to 20% in CASE-2). This de-
crease in nd is followed by its gradual increase as flow slows down after
expansion. For droplet initial positions closer to the walls, the flow
velocity gradients and the maximal flow velocities decrease due to the
formation of the boundary layer. Changes in nd are relatively small for
these droplets. Number densities of droplets starting near the wall be-
have differently for two cases: in CASE-1, droplet number density nd
monotonously increases (up to 40% for d0120 and 20% for d060), while
in CASE-2, nd for all droplets initially decreases and then increases
(maximal final growth is about 10% for d0120).

The time evolution of the heat and mass transfer rates between the
droplets and the carrier phase along various trajectories is shown in

Fig. 7. Time evolution of the heat transfer rate between the droplets and the carrier phase. Solid curves show the values predicted for individual droplets. Dash-
dotted curves show the same values scaled by the number densities, predicted by the FLA. For long times the heat transfer rates are smaller for droplet trajectories
closer to the walls.
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Figs. 7 and 8. Solid curves show the values predicted by the heating and
evaporation model for individual droplets (q,̇ ṁ), dotted curves show
the same values, scaled by the number densities, predicted by the FLA
( =q hṅ ̇ pFLA , =m mṅ ̇ pFLA ). The starting positions of the droplets in re-
lation to the hot walls do not affect the values of q ̇ and ṁ in CASE-1, but
cause big differences in CASE-2, due to the non-uniform temperature
distribution (cf. similar differences for nd).

Oscillations in the values of heat and mass transfer rates in CASE-2
(Fig. 7f) are not believed to have any physical background. These
should be ignored in the analysis.

4. Conclusion

A combined model for the time evolution of a monocomponent
droplet cloud and its heating and evaporation is developed and im-
plemented into ANSYS Fluent. Functionality testing of the new model is
based on the analysis of a droplet cloud in a steady back-step flow. It is
shown that, due to non-homogeneous droplet number density dis-
tribution, the heat and mass transfer rates between the carrier phase
(air) and droplet clouds are different from those inferred from the

analysis of trajectories of individual droplets. The temperature gra-
dients in the flow are shown to have a significant indirect effect on the
evolution of droplet number densities via the effects of these gradients
on flow velocity.
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