Adsorption of environmental contaminants using graphene nanoplatelets (GNP) and PVA-GNP composite cryogels
Summary
Graphene nanoplatelet (GNP) is a new category of graphite derived nanoscaled material prepared from the delamination of thermally expanded graphite (TEG). GNP is consisted of stacks of graphene layers 1-5 nm in thickness, and length and width up to 100 µm width dimensions depending on processing [1]. Synthesis methods include mechanical exfoliation of TEG through ultrasound sonication [2-4] and chemical reduction of graphene oxide [5]. These GNPs are reported to have an openly accessible and large specific surface area which could be utilised for the adsorption of environmental contaminants. However, direct applications of nanoparticles has been proven challenging as the release of these particles has attracted increasing concerns of their environmental impacts [ref]. This issue could be overcome by incorporating the GNP into a composite material which holds the nanoparticles in place during the application.
Cryogel is a type of hydrogel prepared through gelation at sub-zero solvent freezing temperature; while the gelation taken place in a non-frozen liquid phase, the frozen portion of the solvent acted as a pyrogen creating an interconnected macroporous network upon thawing [ref]. Such macoporous structure could provide an ideal backbone to support and expose the GNPs for environmental contamination removal.
The work reported here aimed to develop a composite material with GNP incorporated in a macroporous monolithic structure which not only processes good flow properties but GNP surfaces accessible for containment removal from water.
Cryogel morphology and characterisation
PVA and PVA-GNP composite cryogels was prepared by crosslinking four different grades (Table 1) of commercially available PVA polymers through cryogelation process. The resulting cryogels have free standing structure and were elastic when fully hydrated. The PVA cryogel all have white colour, with the addition of GNP, the composite cryogel taken on the black colour of the GNPs due to the high loading (Figure 1).

Table 1 Four different grades of commercially available PVA used for the preparation of PVA and GNP-PVA composite cryogels
	Code
	Molecular weight
	Hydrolysis degree
	Supplier (Cat. #)

	PVA1
	9000
	80%
	Aldrich (360627)

	PVA2
	67000
	80%
	Fluka (83183)

	PVA3
	89000
	99%
	Aldrich (341584)

	PVA4
	130000
	88%
	Aldrich (81365)



[image: ]
Figure 1 Photographic images of PVA cryogel and PVA-GNP composite cryogels prepared from four different grades of commercial PVA.


The confocal images of the PVA cryogels shows large pores size ranges between 50 to 100nm width and thick polymer wall structure of all the cryogels, except PVA3, which shows smallest pore sizes among all the tested cryogel (Figure 2). The large pore sizes of PVA1, PVA2 and PVA4 would allow better flow properties, suggesting these three PVA cryogels could be suitable to for the incorporation of GNP particles.
The SEM images of the PVA and PVA-GNP composite cryogels prepared from different grades of PVA revealed the presence of large pores and dense wall structure of the cryogels except the cryogels prepared from PVA3, confirming the internal pore structure information obtained from confocal images. 
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Figure 2 Confocal images of PVA cryogels prepared using four different grades of PVAs. PVA cryogels were sliced and stained with 0.1 mg/ml rhodamine B solution.
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Figure 3 SEM images of PVA1 cryogel and PVA1-GNP cryogel. (A) PVA1 cryogel at lower magnification showing large pores (yellow arrow) and dense wall structure (red arrow); (B) PVA1 cryogel at a higher magnification showing smooth pore wall structure (red arrow); (C) PVA1-GNP composite cryogel at a lower magnification showering similar pore structure as PVA1 cryogel, however the GNP clusters could be observed in the gel wall (yellow circle); (D) PVA1-GNP composite cryogel at a higher magnification showing the incorporation of the GNP particles resulted in a rough pore wall structure.
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Figure 4 SEM images of PVA2 cryogel and PVA2-GNP cryogel. (A) PVA2 cryogel at lower magnification showing large pores (yellow arrow) and dense wall structure (red arrow); (B) PVA2 cryogel at a higher magnification showing smooth pore wall structure (red arrow); (C) PVA2-GNP composite cryogel at a lower magnification showering similar pore structure as PVA2 cryogel, however the GNP clusters could be observed in the gel wall (yellow circle); (D) PVA2-GNP composite cryogel at a higher magnification showing the incorporation of the GNP particles resulted in a rough pore wall structure.
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Figure 5 SEM images of PVA3 cryogel and PVA3-GNP cryogel. (A) PVA3 cryogel at lower magnification showing small pores (yellow arrow) and dense wall structure (red arrow); (B) PVA3 cryogel at a higher magnification showing smooth pore wall structure (red arrow) and small pores within the walls (yellow arrow); (C) PVA3-GNP composite cryogel at a lower magnification showering similar pore structure as PVA3 cryogel, however the GNP clusters could be observed in the gel wall (yellow circle); (D) PVA3-GNP composite cryogel at a higher magnification showing the incorporation of the GNP particles resulted in a rough pore wall structure.
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Figure 6 SEM images of PVA4 cryogel and PVA4-GNP cryogel. (A) PVA4 cryogel at lower magnification showing large pores (yellow arrow) and dense wall structure (red arrow); (B) PVA4 cryogel at a higher magnification showing smooth pore wall structure (red arrow); (C) PVA4-GNP composite cryogel at a lower magnification showering similar pore structure as PVA4 cryogel, however the GNP clusters could be observed in the gel wall (yellow circle); (D) PVA4-GNP composite cryogel at a higher magnification showing the incorporation of the GNP particles resulted in a rough pore wall structure.
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Figure 7 Concentrations of 4-chlorophenol remained in solution after direct contact with PVA and  PVA-GNP composite cryogel from increasing molecular weight (PVA1-4) were compared in batch adsorption kinetic from 30 µg/ml 4CP solution
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[bookmark: OLE_LINK1]Figure 8 4-chlorophenol adsorption by PVA-GNP composite cryogel from increasing molecular weight (PVA1-4) were compared in batch adsorption kinetic from 30 µg/ml 4CP solution. Adoption of adsorbate (4CP) per gram of adsorbent (PVA-GNP composite) at time t were calculated by 𝒒𝒕=[(𝑪𝟎−𝑪𝒕)×𝒗]÷𝑴, where C0 and Ct are the 4CP concentration at t=0, and t=t respectively, 𝑣 is the volume of 4CP solution and 𝑀 is the mass of PVA-GNP composite adsorbent



Figure 9 4-chlorophenol adsorption isotherm by GNP and PVA-GNP composite cryogel. (A) is qe calculated using adsorbent total weight, (B) is when qe calculated using the weight of GNP in the composite cryogel (n=1).


[bookmark: OLE_LINK2]Figure 10 Dox adsorption isotherm by GNP, PVA cryogel and PVA-GNP composite cryogel, (A) is qe calculated using adsorbent total weight, (B) is when qe calculated using the weight of GNP in the composite cryogel (±SEM, n=3).



Figure 11 Atrazine adsorption isotherm by GNP, PVA cryogel and PVA-GNP composite cryogel, (A) is qe calculated using adsorbent total weight ( n=1).
[bookmark: _GoBack]
Materials and methods
Materials
Graphene nanoplatelet (GNP) was purchased from XG Scientific. Poly (vinyl) alcohol (PVA) from Fluka (83183) was used for cryogel prepration. Chemical including 4 chlorophenol (4-CP), doxycycline and atrazine were purchased from Sigma.
Cryogel preparation 
Selections of four different grades of commercially available PVA were used to prepare GNP-PVA composites (Table 1). The PVA cryogels were prepared by crosslinking the 5% (w/v) PVA solutions with 0.5% (w/v) glutaraldehyde (GA) at pH 1.0-1.2 and freeze at -12°C for overnight. PVA-GNP cyrogel composites were prepared by adding GNP into the PVA-GA mixture at 55 mg/ml (5.5% w/v) density and prepared in the same conditions as PVA cryogels. The cryogel samples were washed until pH 6-7 before they were freeze-dried for adsorption study.
Table 1 Four different grades of commercially available PVA used for the preparation of PVA and GNP-PVA composite cryogels
	Code
	Molecular weight
	Hydrolysis degree
	Supplier (Cat. #)

	PVA1
	9000
	80%
	Aldrich (360627)

	PVA2
	67000
	80%
	Fluka (83183)

	PVA3
	89000
	99%
	Aldrich (341584)

	PVA4
	130000
	88%
	Aldrich (81365)



4-chlorophenol adsorption kinetic
For the 4-CP adsorption kinetic study, 25 mg of adsorbents were incubated with 2.5 ml of 30 µg/ml 4-chlorophoel at room temperature with shaking, while the 4-CP concentration was monitored at 15, 60, 120, 240, 360 and 1440 mins using Jenway 6705 UV/Vis Spectrophotometer at the wavelength of 286 nm.
4-chlorophenol adsorption isotherm
For the 4-CP adsorption isotherm determination, 20 mg of adsorbents were incubated with 2 ml of 4-CP with the concentration of 5, 10, 25, 50, 100, 200, 250, 500, 1000, 2000, 3000, 5000 µg/ml at room temperature with shaking, for 48 hours. After the incubation, the remaining concentration of 4-CP was determined using BioTek, Synergy II multimode plate reader at the wavelength of 280 nm.
Doxycycline adsorption isotherm
For the doxycycline (Dox) adsorption isotherm study, 20 mg of adsorbents were incubated with 2 ml of Dox with the concentration of 5, 10, 25, 50, 100, 200, 250, 500, 1000, 2000, 3000, 5000 µg/ml at room temperature with shaking, while the Dox concentration was monitored using Spectrophotometer at the wavelength of 375 nm.
Atrizine adsorption isotherm 
The adsorption isotherm of Atrizine was carried out by incubating 20 mg of adsorbents with 2 ml of Atrizine at the concentration of 5, 10, 25, 50, 100, 200, 250, 500, 1000, 2000, 3000, 5000 µg/ml at room temperature with shaking for 48 hours. Before the remaining Atrizine concentration was monitored using Spectrophotometer at the wavelength of 375 nm.
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